The sun has produced energy for billions of years. Solar energy is the solar radiation that reaches the earth.
Solar energy can be converted directly or indirectly into other forms of energy, such as heat and electricity. The major drawbacks (problems, or issues to overcome) of solar energy are: (1) the intermittent and variable manner in which it arrives at the earth's surface and, (2) the large area required to collect it at a useful rate.
Solar energy is used for heating water for domestic use, space heating of buildings, drying agricultural products, and generating electrical energy.
In the 1830s, the British astronomer John Herschel used a solar collector box to cook food during an expedition to Africa. Now, people are trying to use the sun's energy for lots of things.
Electric utilities are trying photovoltaics, a process by which solar energy is converted directly to electricity. Electricity can be produced directly from solar energy using photovoltaic devices or indirectly from steam generators using solar thermal collectors to heat a working fluid.
Out of the 14 known solar electric generating units operating in the US at the end of 2004, 10 of these are in California, and 4 in Arizona. No statistics are being collected on solar plants that produce less than 1 megawatt of electricity, so there may be smaller solar plants in a number of other states.
PHOTOVOLTAIC ENERGY
Photovoltaic energy is the conversion of sunlight into electricity through a photovoltaic (PVs) cell, commonly called a solar cell. A photovoltaic cell is a nonmechanical device usually made from silicon alloys.
Sunlight is composed of photons, or particles of solar energy. These photons contain various amounts of energy corresponding to the different wavelengths of the solar spectrum. When photons strike a photovoltaic cell, they may be reflected, pass right through, or be absorbed. Only the absorbed photons provide energy to generate electricity. When enough sunlight (energy) is absorbed by the material (a semiconductor), electrons are dislodged from the material's atoms. Special treatment of the material surface during manufacturing makes the front surface of the cell more receptive to free electrons, so the electrons naturally migrate to the surface.
When the electrons leave their position, holes are formed. When many electrons, each carrying a negative charge, travel toward the front surface of the cell, the resulting imbalance of charge between the cell's front and back surfaces creates a voltage potential like the negative and positive terminals of a battery. When the two surfaces are connected through an external load, electricity flows.
The photovoltaic cell is the basic building block of a PV system. Individual cells can vary in size from about 1 cm (1/2 inch) to about 10 cm (4 inches) across. However, one cell only produces 1 or 2 watts, which isn't enough power for most applications. To increase power output, cells are electrically connected into a packaged weather-tight module. Modules can be further connected to form an array. The term array refers to the entire generating plant, whether it is made up of one or several thousand modules. As many modules as needed can be connected to form the array size (power output) needed.
The performance of a photovoltaic array is dependent upon sunlight. Climate conditions (e.g., clouds, fog) have a significant effect on the amount of solar energy received by a PV array and, in turn, its performance. Most current technology photovoltaic modules are about 10 percent efficient in converting sunlight with further research being conducted to raise this efficiency to 20 percent.
The pv cell was discovered in 1954 by Bell Telephone researchers examining the sensitivity of a properly prepared silicon wafer to sunlight. Beginning in the late 1950s, pvs were used to power U.S. space satellites. The success of PVs in space generated commercial applications for pv technology. The simplest photovoltaic systems power many of the small calculators and wrist watches used everyday. More complicated systems provide electricity to pump water, power communications equipment, and even provide electricity to our homes.
Photovoltaic conversion is useful for several reasons. Conversion from sunlight to electricity is direct, so that bulky mechanical generator systems are unnecessary. The modular characteristic of photovoltaic energy allows arrays to be installed quickly and in any size required or allowed.
Also, the environmental impact of a photovoltaic system is minimal, requiring no water for system cooling and generating no by-products. Photovoltaic cells, like batteries, generate direct current (DC) which is generally used for small loads (electronic equipment). When DC from photovoltaic cells is used for commercial applications or sold to electric utilities using the electric grid, it must be converted to alternating current (AC) using inverters, solid state devices that convert DC power to AC. Historically, pvs have been used at remote sites to provide electricity. However, a market for distributed generation from PVs may be developing with the unbundling of transmission and distribution costs due to electric deregulation. The siting of numerous small-scale generators in electric distribution feeders could improve the economics and reliability of the distribution system.
SOLAR THERMAL HEAT
The major applications of solar thermal energy at present are heating swimming pools, heating water for domestic use, and space heating of buildings. For these purposes, the general practice is to use flat-plate solar-energy collectors with a fixed orientation (position).
Where space heating is the main consideration, the highest efficiency with a fixed flat-plate collector is obtained if it faces approximately south and slopes at an angle to the horizon equal to the latitude plus about 15 degrees.
Solar collectors fall into two general categories: nonconcentrating and concentrating.
In the nonconcentrating type, the collector area (i.e. the area that intercepts the solar radiation) is the same as the absorber area (i.e., the area absorbing the radiation).
In concentrating collectors, the area intercepting the solar radiation is greater, sometimes hundreds of times greater, than the absorber area. Where temperatures below about 200o F are sufficient, such as for space heating, flat-plate collectors of the nonconcentrating type are generally used.
There are many flat-plate collector designs but generally all consist of (1) a flat-plate absorber, which intercepts and absorbs the solar energy, (2) a transparent cover(s) that allows solar energy to pass through but reduces heat loss from the absorber, (3) a heat-transport fluid (air or water) flowing through tubes to remove heat from the absorber, and (4) a heat insulating backing.
Solar space heating systems can be classified as passive or active. In passive heating systems, the air is circulated past a solar heat surface(s) and through the building by convection (i.e. less dense warm air tends to rise while more dense cooler air moves downward) without the use of mechanical equipment. In active heating systems, fans and pumps are used to circulate the air or the heat absorbing fluid.
SOLAR THERMAL POWER PLANTS
Solar thermal power plants use the sun's rays to heat a fluid, from which heat transfer systems may be used to produce steam. The steam, in turn, is converted into mechanical energy in a turbine and into electricity from a conventional generator coupled to the turbine. Solar thermal power generation is essentially the same as conventional technologies except that in conventional technologies the energy source is from the stored energy in fossil fuels released by combustion. Solar thermal technologies use concentrator systems due to the high temperatures needed for the working fluid. The three types of solar-thermal power systems in use or under development are: parabolic trough, solar dish, and solar power tower.
PARABOLIC TROUGH
The parabolic trough is used in the largest solar power facility in the world located in the Mojave Desert at Kramer Junction, California. This facility has operated since the 1980’s and accounted for the majority of solar electricity produced by the electric power sector in 2004.
A parabolic trough collector has a linear parabolic-shaped reflector that focuses the sun's radiation on a linear receiver located at the focus of the parabola. The collector tracks the sun along one axis from east to west during the day to ensure that the sun is continuously focused on the receiver. Because of its parabolic shape, a trough can focus the sun at 30 to 100 times its normal intensity (concentration ratio) on a receiver pipe located along the focal line of the trough, achieving operating temperatures over 400 degrees Celcius.
A collector field consists of a large field of single-axis tracking parabolic trough collectors. The solar field is modular in nature and is composed of many parallel rows of solar collectors aligned on a north-south horizontal axis. A working (heat transfer) fluid is heated as it circulates through the receivers and returns to a series of heat exchangers at a central location where the fluid is used to generate high-pressure superheated steam. The steam is then fed to a conventional steam turbine/generator to produce electricity. After the working fluid passes through the heat exchangers, the cooled fluid is recirculated through the solar field. The plant is usually designed to operate at full rated power using solar energy alone, given sufficient solar energy. However, all plants are hybrid solar/fossil plants that have a fossil-fired capability that can be used to supplement the solar output during periods of low solar energy. The Luz plant is a natural gas hybrid.
SOLAR DISH
A solar dish/engine system utilizes concentrating solar collectors that track the sun on two axes, concentrating the energy at the focal point of the dish because it is always pointed at the sun. The solar dish's concentration ratio is much higher that the solar trough, typically over 2,000, with a working fluid temperature over 750oC. The power-generating equipment used with a solar dish can be mounted at the focal point of the dish, making it well suited for remote operations or, as with the solar trough, the energy may be collected from a number of installations and converted to electricity at a central point. The engine in a solar dish/engine system converts heat to mechanical power by compressing the working fluid when it is cold, heating the compressed working fluid, and then expanding the fluid through a turbine or with a piston to produce work. The engine is coupled to an electric generator to convert the mechanical power to electric power.
SOLAR POWER TOWER
A solar power tower or central receiver generates electricity from sunlight by focusing concentrated solar energy on a tower-mounted heat exchanger (receiver). This system uses hundreds to thousands of flat sun-tracking mirrors called heliostats to reflect and concentrate the sun's energy onto a central receiver tower. The energy can be concentrated as much as 1,500 times that of the energy coming in from the sun. Energy losses from thermal-energy transport are minimized as solar energy is being directly transferred by reflection from the heliostats to a single receiver, rather than being moved through a transfer medium to one central location, as with parabolic troughs. Power towers must be large to be economical. This is a promising technology for large-scale grid-connected power plants. Though power towers are in the early stages of development compared with parabolic trough technology, a number of test facilities have been constructed around the world.
The U.S. Department of Energy along with a number of electric utilities built and operated a demonstration solar power tower near Barstow, California, during the 1980's and 1990's. Learn more about the history of solar power in the Solar Timeline.
Last Revised: July 2006Sources: Energy Information Administration, Electric Power Annual, Form EIA-860, Annual Electric Generator Report database, 2004.
Monday, March 12, 2007
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment