Monday, March 12, 2007

automobile

History

Karl Benz

Replica of the Benz Patent Motorwagen built in 1886

Ford Model T, 1927
Main article: History of the automobile
Some sources suggest that Ferdinand Verbiest, whilst a member of a Jesuit mission in China, may have built the first steam powered car around 1672.[2][3] François Isaac de Rivaz, a Swiss inventor, designed the first internal combustion engine which was fuelled by a mixture of hydrogen and oxygen and used it to develop the world's first vehicle to run on such an engine. The design was not very successful, as was the case with Samuel Brown, Samuel Morey, and Etienne Lenoir who each produced vehicles powered by clumsy internal combustion engines.
An automobile powered by a Otto gasoline engine was built in Germany by Karl Benz in 1885 and granted a patent in the following year. Although several other engineers (including Gottlieb Daimler, Wilhelm Maybach and Siegfried Marcus) were working on the problem at about the same time, Benz is generally credited with the invention of the modern automobile.
Approximately 25 of Benz's vehicles were built before 1893, when his first four-wheeler was introduced. They were powered with four-stroke engines of his own design. Emile Roger of France, already producing Benz engines under license, now added the Benz automobile to his line of products. Because France was more open to the early automobiles, more were built and sold in France through Roger than Benz sold in Germany. From 1890 to 1895 about 30 vehicles were built by Daimler and his assistant, Wilhelm Maybach, either at the Daimler works or in the Hotel Hermann, where they set up shop after falling out with their backers. Benz and Daimler seem to have been unaware of each other's early work and worked independently.
In 1890, Emile Levassor and Armand Peugeot of France began producing vehicles with Daimler engines, and so laid the foundation of the motor industry in France. The first American car with a gasoline internal combustion engine supposedly was designed in 1877 by George Baldwin Selden of Rochester, New York, who applied for a patent on an automobile in 1879. In Britain there had been several attempts to build steam cars with varying degrees of success with Thomas Rickett even attempting a production run in 1860.[4] Santler from Malvern is recognized by the Veteran Car Club of Great Britain as having made the first petrol-powered car in the country in 1894[5] followed by Frederick William Lanchester in 1895[5] but these were both one-ofs. The first production vehicles came from the Daimler Motor Company, founded by Harry J. Lawson in 1896, and making their first cars in 1897.[5]
In 1892 Rudolf Diesel got a patent for a "New Rational Combustion Engine" by modifying the Carnot Cycle. In 1897 he built the first Diesel Engine. In 1895, George B. Selden was granted a United States patent for a two-stroke automobile engine (U.S. Patent 549160 ). This patent did more to hinder than encourage development of autos in the United States. Steam, electric, and gasoline powered autos competed for decades, with gasoline internal combustion engines achieving dominance in the 1910s.

Ransom E. Olds.
The large-scale, production-line manufacturing of affordable automobiles was debuted by Ransom Eli Olds at his Oldsmobile factory in 1902. This assembly line concept was then greatly expanded by Henry Ford in the 1910s. Development of automotive technology was rapid, due in part to the hundreds of small manufacturers competing to gain the world's attention. Key developments included electric ignition and the electric self-starter (both by Charles Kettering, for the Cadillac Motor Company in 1910-1911), independent suspension, and four-wheel brakes.
Although various pistonless rotary engine designs have attempted to compete with the conventional piston and crankshaft design, only Mazda's version of the Wankel engine has had more than very limited success.
Since the 1920s, nearly all cars have been mass-produced to meet market needs, so marketing plans have often heavily influenced automobile design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one company, so that buyers could "move up" as their fortunes improved. The makes shared parts with one another so that the larger production volume resulted in lower costs for each price range. For example, in the 1950s, Chevrolet shared hood, doors, roof, and windows with Pontiac; the LaSalle of the 1930s, sold by Cadillac, used the cheaper mechanical parts made by the Oldsmobile division.
Automobile history eras [edit]
1890s
1900s
1910s
1920s
1930s
1940s
1950s
1960s
1970s
1980s
1990s
2000s
Veteran
Brass or Edwardian
Vintage
Pre-War
Post-War
Modern
Antique
Classic

Economics and societal impact

The hydrogen powered FCHV (Fuel Cell Hybrid Vehicle) was developed by Toyota in 2005
Main article: Economics of automobile ownership
Main article: Effects of the automobile on societies
Main article: Automobile production statistics
Main article: Future of the car
The economics of personal automobile ownership go beyond the initial cost of the vehicle and includes repairs, maintenance, fuel, depreciation, the cost of borrowing, parking fees, tire replacement, taxes and insurance.
Additionally, there are indirect societal costs such as the costs of maintaining roads and other infrastructure, pollution, public health costs of pollution, health care costs due to accidents, and the cost of finally disposing of the vehicle at the end of its life. The ability for humans to move rapidly from place to place has far reaching implications for the nature of our society. People can now live far from their workplaces, the design of our cities is determined as much by the need to get vehicles into and out of the city as the nature of the buildings and public spaces within the city.
High transportation fuel prices have not seriously reduced car usage but do make it more expensive.[citation needed] One environmental benefit of high fuel prices is that it is an incentive for the production of more efficient (and hence less polluting) car designs - i.e. hybrid vehicles - and the development of alternative fuels. At the beginning of 2006, 1 liter of gasoline cost approximately US$0.60 in the United States and in Germany and other European countries nearly US$1.80. With fuel prices at these levels there is a strong incentive for consumers to purchase lighter, smaller, more fuel-efficient cars, or to simply not drive. These changes are resisted by those with an interest in maintaining the massive economy of car culture. Individual mobility is highly prized in dominant societies so the demand for automobiles is still strong. Alternative individual modes of transport, such as Personal rapid transit, cycling, walking, skating, and organised cargo movement, could serve as an alternative to automobiles if they prove to be socially accepted.

Fuel and propulsion technologies

The Henney Kilowatt, the first modern (transistor-controlled) electric car.

2007 Tesla Roadster
Main article: Alternative fuel vehicle
Most automobiles in use today are propelled by gasoline (also known as petrol) or diesel internal combustion engines but these are known to cause air pollution and are also blamed for contributing to climate change and global warming.[6] Increasing costs of oil-based fuels and tightening environmental laws and restrictions on greenhouse gas emissions are propelling work on alternative power systems for automobiles. Efforts to improve or replace these technologies include hybrid vehicles, electric vehicles and hydrogen vehicles.

Diesel
Diesel engined cars have long been popular in Europe with the first models being introduced in the 1930s by Mercedes Benz and Citroen. The main benefit of Diesel combustion engines is its 50% fuel burn efficiency compared with 27% [7] in the best gasoline engines. A down side of the diesel is the presence in the exhaust gases of fine soot particulates and manufacturers are now starting to fit filters to remove these. Many diesel powered cars can also run with little or no modifications on 100% pure biodiesel.

Gasoline
Gasoline engines however have the advantage over diesel in being lighter and able to work at higher rotational speeds and they are the usual choice for fitting in high performance sports cars. Continuous development of gasoline engines for over a hundred years has produced improvements in efficiency and reduced polution. The carburettor was used on nearly all road car engines until the 1980s but it was long realised that better control of the fuel/air mixture could be achieved with fuel injection. Indirect fuel injection was first used in aircraft engines from 1909, in racing car engines from the 1930s and road cars from the late 1950s. [7] Gasoline Direct Injection (GDI) is now starting to appear in production vehicles such as the 2007 BMW MINI. Exhaust gases are also cleaned up by fitting a catalytic converter into the exhaust system. Clean air legislation in many of the car industries most important markets has made both catalysts and fuel injection virtually universal fittings. Most modern gasoline engines are also capable of running with up to 15% ethanol mixed into the gasoline fuel - older vehicles may have seals and hoses that can be harmed by ethanol. With a small amount of redesign, gasoline-powered vehicles can run on ethanol concentrations as high as 85%. 100% ethanol is used in some parts of the world but vehicles must be started on pure gasoline and switched over to ethanol once the engine is running. Most gasoline engined cars can also run on LPG with the addition of an LPG tank for fuel storage and carburation modifications to add an LPG mixer. LPG produces fewer toxic emissions and is a popular fuel for fork lift trucks that have to operate inside buildings.

Electric
The first electric cars were built in the late 1800s, but the building of battery powered vehicles that could rival internal combustion models had to wait for the introduction of modern semiconductor controls. Because they can deliver a high torque at low revolutions electric cars do not require such a complex drivetrain and transmission as internal combustion powered cars. Some are able to accelerate from 0-60 mph (96 km/hour) in 4.0 seconds with a top speed around 130 mph (210 km/h). They have a range of 250 miles (400 km) on the EPA highway cycle requiring 3-1/2 hours to completely charge. Equivalent fuel efficiency to internal combustion is not well defined but some press reports give it at around 135 mpg.

Steam
Steam power, usually using an oil or gas heated boiler, was also in use until the 1930s but had the major disadvantage of being unable to power the car until boiler pressure was available. It has the advantage of being able to produce very low emissions as the combustion process can be carefully controlled.

Gas Turbine
In the 1950s there was a brief interest in using gas turbine (jet) engines and several makers including Rover produced prototypes. In spite of the power units being very compact, high fuel consumption, severe delay in throttle response and lack of engine braking meant no cars reached production.

Rotary (Wankel) engines
Rotary Wankel engines were introduced into road cars by NSU with the Ro 80 and later were seen in several Mazda models. In spite of their impressive smoothness, poor reliability and fuel economy led to them largely disappearing. Mazda, however, has continued research on these engines and overcame most of the earlier problems.

Future developments
Much current research and development is centered on hybrid vehicles that use both electric power and internal combustion. Research into alternative forms of power also focus on developing fuel cells, Homogeneous Charge Compression Ignition (HCCI), and even using the stored energy of compressed air or liquid nitrogen.

Design
Main article: Automotive design

The 1955 Citroën DS; revolutionary visual design and technological innovation.
The design of modern cars is typically handled by a large team of designers and engineers from many different disciplines. As part of the product development effort the team of designers will work closely with teams of design engineers responsible for all aspects of the vehicle. These engineering teams include: chassis, body and trim, powertrain, electrical and production. The design team under the leadership of the design director will typically comprise of an exterior designer, an interior designer (usually referred to as stylists) and a color and materials designer. A few other designers will be involved in detail design of both exterior and interior. For example, a designer might be tasked with designing the rear light clusters or the steering wheel. The color and materials designer will work closely with the exterior and interior designers in developing exterior color paints, interior colors, fabrics, leathers, carpet, wood trim and so on.
In 1924 the American national automobile market began reaching saturation. To maintain unit sales, General Motors instituted annual model-year design changes in order to convince car owners that they needed to buy a new replacement each year. Since 1935 automotive form has been driven more by consumer expectations than by engineering improvement.
There have been many efforts to innovate automobile design funded by the NHTSA, including the work of the NavLab group at Carnegie Mellon University. Recent efforts include the highly publicized DARPA Grand Challenge race.
Acceleration, braking, and measures of turning or agility vary widely between different makes and models of automobile. The automotive publication industry has developed around these performance measures as a way to quantify and qualify the characteristics of a particular vehicle. See quarter mile and 0 to 60mph.

Safety
Main article: Car safety
Main article: Automobile accident

One of the consequences of a serious Automobile accident.
Road traffic injuries represent about 25% of worldwide injury-related deaths (the leading cause) with an estimated 1.2 million deaths (2004) each year.[8]
Automobile accidents are almost as old as automobiles themselves. Early examples include, Joseph Cugnot, who crashed his steam-powered "Fardier" against a wall in 1771,[9] Mary Ward, who became one of the first document automobile fatalites in 1869 in Parsonstown, Ireland,[10] and Henry Bliss, one of the United State's first pedestrian automobile casualties in 1899 in New York.[11]
Cars have many basic safety problems - for example, they have human drivers who make mistakes, wheels that lose traction when the braking or turning forces are too high. Some vehicles have a high center of gravity and therefore an increased tendency to roll over. When driven at high speeds, collisions can have serious or even fatal consequence.
Early safety research focused on increasing the reliability of brakes and reducing the flammability of fuel systems. For example, modern engine compartments are open at the bottom so that fuel vapors, which are heavier than air, vent to the open air. Brakes are hydraulic and dual circuit so that failures are slow leaks, rather than abrupt cable breaks. Systematic research on crash safety started[citation needed] in 1958 at Ford Motor Company. Since then, most research has focused on absorbing external crash energy with crushable panels and reducing the motion of human bodies in the passenger compartment.

Airbags
Significant reductions in death and injury have come from the addition of Safety belts and laws in many countries to require vehicle occupants to wear them. Airbags and specialised child restraint systems have improved on that. Structural changes such as side-impact protection bars in the doors and side panels of the car mitigate the effect of impacts to the side of the vehicle. Many cars now include radar or sonar detectors mounted to the rear of the car to warn the driver if he or she is about to reverse into an obstacle or a pedestrian. Some vehicle manufacturers are producing cars with devices that also measure the proximity to obstacles and other vehicles in front of the car and are using these to apply the brakes when a collision is inevitable. There have also been limited efforts to use heads up displays and thermal imaging technologies similar to those used in military aircraft to provide the driver with a better view of the road at night.
There are standard tests for safety in new automobiles, like the EuroNCAP and the US NCAP tests.[12] There are also tests run by organizations such as IIHS and backed by the insurance industry.
Despite technological advances, there is still significant loss of life from car accidents: About 40,000 people die every year in the United States, with similar figures in Europe. This figure increases annually in step with rising population and increasing travel if no measures are taken, but the rate per capita and per mile travelled decreases steadily. The death toll is expected to nearly double worldwide by 2020. A much higher number of accidents result in injury or permanent disability. The highest accident figures are reported in China and India. The European Union has a rigid program to cut the death toll in the EU in half by 2010 and member states have started implementing measures.
Automated control has been seriously proposed and successfully prototyped. Shoulder-belted passengers could tolerate a 32 g emergency stop (reducing the safe intervehicle gap 64-fold) if high-speed roads incorporated a steel rail for emergency braking. Both safety modifications of the roadway are thought to be too expensive by most funding authorities, although these modifications could dramatically increase the number of vehicles that could safely use a high-speed highway.

Further reading
Articles relating to automobile configurations
Car body style and classification
2 plus 2, Antique car, Cabrio coach, Cabriolet, City car, Classic car, Compact car, Compact executive car, Compact MPV, Compact SUV, Convertible, Coupé, Coupé convertible, Coupe utility, Crossover SUV, Custom car, Drophead coupe, Executive car, Fastback, Full-size car, Grand tourer, Hardtop, Hatchback, Hot hatch, Hot rod, Large family car, Leisure activity vehicle, Liftback, Limousine, Luxury car, Microcar, Mid-size car, Mini MPV, Mini SUV, Minivan, Multi-purpose vehicle, Muscle car, Notchback, Panel van, Personal luxury car, Pickup truck, Retractable hardtop, Roadster, Sedan, Saloon, Small family car, Sport compact, Sports car, Sport utility vehicle, Spyder, Station wagon, Estate car, Supermini, Targa top, Taxicab, Touring car, Town car, T-top, Tow truck, Ute, Van, Voiturette
Specialised vehicles
Amphibious vehicle, Driverless car, Gyrocar, Flying car.
Propulsion technologies
Internal combustion engine, Electric vehicle, Neighborhood electric vehicle, Hybrid vehicle, Battery electric vehicle, Hydrogen vehicle, Fuel cell, Plug-in hybrid electric vehicle, Steam car, Alternative fuel cars, Biodiesel, Gasohol, Ethanol, LPG (Propane), Homogeneous Charge Compression Ignition, Liquid Nitrogen, Gasoline Direct Injection
Driven wheels
Two-wheel drive, Four-wheel drive, Front-wheel drive, Rear-wheel drive, All-wheel drive
Engine positioning
Front engine, Rear engine, Mid engine
Layout
FF layout, FR layout, MR layout, MF layout, RR layout
Engine configuration
Internal combustion engine, Straight-6, V engine, Wankel engine, Reciprocating engine, Inline engine, Flat engine, Flathead engine, Diesel engine, Two-stroke cycle, Four-stroke cycle, Pushrod engine, Straight engine, H engine, Turbodiesel, Hybrid vehicle, Rechargeable energy storage system, Electric vehicle, Hydrogen vehicle
Articles relating to parts of automobiles
Body
Framework
Body-on-frame, Bumper, Cabrio coach, Chassis, Continental tire, Crumple zone, Dagmar bumpers, Fender, Fender skirts, Grille, Hood, Hood scoop, Monocoque construction, pillar, Pontoon fenders, Quarter panel, Shaker scoop, Spoiler, Subframe, Tonneau
Compartments
trunk , hood.
Doors
Butterfly doors, Gull-wing door, Scissor doors, Suicide door
Glass
Sunroof, Greenhouse, sun visor, Windshield, Windscreen wiper, Windshield washer fluid.
Car mirror
Power mirrors.
Other
Curb feeler, Antenna ball, Bumper sticker, Hood ornament, Japan Black paint, Monsoonshield, Nerf bar, Tow hitch, Truck accessory
Exterior Equipment
Lighting
Daytime running lamp, Foglamp, Headlamp, Headlight styling, Hidden headlamps, High intensity discharge, Retroreflector, Sealed beam, Trafficators
Legal and other
Vehicle registration plate, Vanity plate, distance sensor, park sensor.
Car engine
Air/Fuel
Air filter, Automatic Performance Control, Blowoff valve, Boost, Boost controller, Butterfly valve, Carburetor, Charge cooler, Centrifugal type supercharger, Cold air intake, Engine management system, Engine Control Unit, Forced induction, Front mounted intercooler, Fuel filter, Fuel injection, Fuel pump, Fuel tank, Gasoline direct injection, Indirect injection, Intake, Intercooler, Manifold, Manifold vacuum, Mass flow sensor, Naturally-aspirated engine, Ram-air intake, Scroll-type supercharger, Short ram air intake, Supercharger, Throttle body, Top mounted intercooler, Turbocharger, Turbocharged Direct Injection, Twin-turbo, Variable Length Intake Manifold, Variable geometry turbocharger. Warm air intake
Exhaust
Catalytic converter, Emissions control devices, Exhaust pipe, Exhaust system, Glasspack, Muffler, Oxygen sensor
Cooling
Aircooling, Antifreeze, Ethylene glycol, Radiator, Thermostat
Ignition system
Starter, Car battery, Contact breaker, Distributor, Electrical ballast, Ignition coil, Lead-acid battery, Magneto, Spark-ignition, Spark plug
Other
Balance shaft, Block heater, Crank. Cam, Camshaft, Connecting rod, Combustion chamber, Crank pin, Crankshaft, Crossflow cylinder head, Crossplane, Desmodromic valve, Engine knocking, Compression ratio, Crank sensor, Cylinder, Cylinder bank, Cylinder block, Cylinder head, Cylinder head porting, Dump valve,Engine balance, Oil filter, Firing order, Freeze plug, Gasket, Head gasket, Hypereutectic piston, Hydrolock, Lean burn, Main bearing, Motor oil, Multi-valve, Oil sludge, Overhead camshaft, Overhead valve, PCV valve, Piston, Piston ring, Pneumatic valve gear, Poppet valve, Power band, Redline, Reverse-flow cylinder head, Rocker arm, Seal, Sleeve valve, Starter ring gear, Synthetic oil, Tappet, Timing belt, Timing mark, Top dead centre, Underdrive pulleys, Valve float, Variable valve timing
Interior equipment
Instruments
Backup camera, Boost gauge, Buzzer, Car computer, Carputer, Fuel gauge, Global Positioning System and Navigation system,Head-Up Display, Idiot light, Malfunction Indicator Lamp, Night vision, Odometer, Speedometer, Tachometer, Trip computer
Controls
Bowden cable, Cruise control (speed control), Electronic throttle control, Gear stick, Hand brake, Manettino dial, Steering wheel, Throttle,
Motor vehicle theft deterrence
Key, car alarm, ESITrack, Immobiliser, Klaxon, Vehicle tracking system, VIN etching
Passenger safety & seating
Airbag, Armrest, Automatic seatbelt, Bench seat, Bucket seat, Child safety lock, Dicky seat, Passive safety, Rumble seat, Seat belt
Other
Air conditioning, Ancillary power, Car audio, Car phone, Center console, Dashboard, Glove compartment, Motorola connector, Power window, Rear-view mirror
Powertrain
Wheels and Tires
All-terrain tire, Bias-ply tire, Contact patch, Custom wheel, Drive wheel, Hubcap, Magnesium alloy wheel, Mud-terrain tyre, Paddle tires, Radial tire, Rostyle wheel, Run flat tire, Schrader valve, Slick tire, Spinner, Tire code, Tire Pressure Monitoring System, Tread, Treadwear rating, Whitewall tire, Wire wheels
Transmission
Automatic transmission, Clutch, Continuously variable transmission, Differential, Driveshaft, Electrorheological clutch, Epicyclic gearing, Fluid coupling, Fully-automatic transmission, Gear stick, Gearbox, Hydramatic, Limited slip differential, Locking differential, Manual transmission, Roto Hydramatic, Saxomat, Semi-automatic transmission, Semi-automatic transmission, Super Turbine 300, Tiptronic Torque converter, Transmission (mechanics), Transmission Control Unit, Turbo-Hydramatic, Universal joint
Steering
Ackermann steering geometry, Anti-lock braking system, Camber angle, Car handling, Caster angle, Oversteer, Power steering, Rack and pinion, Toe angle, Torque steering, Understeer
Suspension
Axle, Beam axle, Coil spring, De Dion tube, Double wishbone, Electronic Stability Control, Hydragas, Hydrolastic, Hydropneumatic suspension, Independent suspension, Kingpin, Leaf spring, Live axle, MacPherson strut, Multi-link suspension, Panhard rod, Semi-trailing arm suspension, Shock absorber, Sway bar, Swing axle, Torsion beam suspension, Transaxle, Trailing arm, Unsprung weight, Watt's linkage, Wishbone suspension
Brakes
Anti-lock braking system, Disc brake, Drum brake, Hand brake, Hydraulic brake, Inboard brake, Brake lining, Brake fade, Brake fluid, Hydraulic fluid, Brake bleeding, Engine braking, Electronic brakeforce distribution, Regenerative brake

See also

Cars Portal
0 to 60 mph
Automotive package
Car and Driver
Car supermarket and Car dealership
Driverless car
Emission standard
Garage and breakdown.
List of automobile manufacturers
List of automotive superlatives
OScar (open source car)
Passenger vehicles in the United States
Roadway: roadway air dispersion modeling and roadway noise
Road and Track
Spare part
Suggested retail price
Towing
Vehicle acronyms and abbreviations
Vehicle insurance
Warranty
Years in motoring

Notes and references
^ http://www.sasi.group.shef.ac.uk/worldmapper/display.php?selected=31
^ SA MOTORING HISTORY - TIMELINE. Government of South Australia.
^ Setright, L. J. K. (2004). Drive On!: A Social History of the Motor Car. Granta Books. ISBN 1-86207-698-7.
^ Burgess Wise, D. (1970). Veteran and Vintage Cars. London: Hamlyn. ISBN 0-600-00283-7.
^ a b c Georgano, N. (2000). Beaulieu Encyclopedia of the Automobile. London: HMSO. ISBN 1-57958-293-1.
^ Global Climate Change. U.S. Department of Energy. Retrieved on 2007-03-03.
^ a b Norbye, Jan (1988). Automotive fuel injection Systems. Haynes Publishing. ISBN 0-85429-755-3.
^ http://www.who.int/world-health-day/2004/infomaterials/world_report/en/
^ http://www.ile-de-france.drire.gouv.fr/vehicules/homolo/cnrv/histoire.htm
^ http://www.universityscience.ie/pages/scientists/sci_mary_ward.php
^ http://www.citystreets.org/plaque.html
^ http://www.nhtsa.dot.gov/cars/testing/ncap

university

History

[edit] The first "universities"

The tower of the University of Coimbra, the oldest Portuguese university.

Degree ceremony at the University of Oxford. The Pro-Vice-Chancellor in MA gown and hood, Proctor in official dress and new Doctors of Philosophy in scarlet full dress. Behind them, a bedel, another Doctor and Bachelors of Arts and Medicine.
Relative to the above definition, there is controversy as to which university is the world's oldest. Takshashila University[1] may be the earliest, historically-documented universities. The original Latin word "universitas", first used in time of renewed interest in Classical Greek and Roman tradition, tried to reflect this feature of the Academy of Plato. If we consider university simply as a higher education institution, then it could be Shang Hsiang, founded before the 21st century BC in China according to legend. Later Taixue and Guozijian serve as the highest level of educational etablishment while academies became very popular as non-governmental etablishments teaching Confucianism and Chinese literature among other things. The choice for the oldest university is usually among Constantinople, Al Karaouine or Al-Azhar universities. Nalanda University, founded in Bihar, India around the 5th century BC conferred academic degree titles to its graduates, while also offering post-graduate courses. Another Indian university whose ruins were only recently excavated was Ratnagiri University in Orissa. Al-Azhar University, founded in Cairo, Egypt in the 10th century, offered a variety of post-graduate degrees, and is often regarded as the first full-fledged university. The University of Constantinople, founded in 849, by the regent Bardas of emperor Michail III, is generally considered the first institution of higher learning with the characteristics we associate today with a university (research and teaching, auto-administration, academic independence, et cetera). The Guinness Book of World Records recognizes the University of Al Karaouine in Fez, Morocco as the oldest university in the world with its founding in 859.

[edit] Early institutions
In ancient China, there were a number of institutions of higher learning that vaguely resembled universities in the Western sense of the word. It is reputed that an education system had been established before 21st century BC in China and a higher learning institution named Shang Hsiang (Shang means high and Hsiang means school) had been established by Shun (about 2255 BC–2205 BC) during the Youyu period. The higher learning institution may be the origination of the central imperial school, which was called Dongxu in Xia Dynasty (2205 BC–1766 BC), Youxue in Shang Dynasty (1766 BC - 1046 BC), Dongjiao and later Piyong in Zhou Dynasty (1046 BC–249 BC), Taixue in Han Dynasty (202 BC–220 AD), and Guozijian from Sui dynasty to Qing dynasty. Nanjing University traces its history back to the imperial central school at Nanjing founded in 258 and the Imperial Nanjing University became the first comprehensive institution as a combination of education and research consisted of five faculties in 470. Generally in a single dynasty there was only one imperial central school which was always located in the capital city and was the highest institution of learning of the nation. There were regional schools since 2nd BC in Han dynasty and later in every county-level and above district there was a prefecture school. Shuyuan emerged in 8th century in Tang Dynasty was another kind of institutions of learning. They were generally privately owned, and some were partly aided by governments. There were thousands of Shuyuan recorded in history, and the degree of them varied from one to another. The advanced Shuyuan such as Yuelu Shuyuan and Bailudong Shuyuan can be taken as higher institutions of learning. Other countries in East Asia such as Korea, Japan and Vietnam shared the same educational system and Shuyuan were also established in these countries. The early Chinese state depended upon literate, educated officials for operation of the empire, and an imperial examination was established in the Sui Dynasty (581–618) for evaluating and selecting officials from the general populace.
As early as the 4th century B.C. Indian civilisation could boast of an academic establishment like Takshashila in the North-east, which produced geniuses like Panini and Kautilya (both possibly from Taxila). Elsewhere the ancient cities of Nalanda, Vikramshila, and Kanchipuram in ancient India were greatly reputed centres of learning in the east, with students from all over Asia. In particular, Nalanda was a famous center of Buddhist scholarship, and as such it attracted thousands of Buddhist scholars from China, East Asia, Central Asia and South-East Asia, while also attracting many students from Persia and the Middle East. The cosmopolitan nature of medieval Indian universities is well attested by foreign records like those of Xuanzang and I-ching, both of whom studied in medieval India. These institutions were supported by both local and royal patronage. Nalanda for instance was supported by the Late Guptas and later Harsha whilst Vikramashila flourished under the patronage of the Pala kings. The universities also served as repositories of knowledge, holding vast quantities of palm-leave manuscripts storing information from various sciences and arts. Amongst the more common subjects offered for study were mathematics, grammar and linguistics (esp for Sanskrit), astronomy and philosophy. Interestingly whilst these were largely Buddhist establishments (esp in the case of Nalanda and Vikramashila) the study of the Vedas and Brahmanic texts was nevertheless important. The format of lectures is also known in the case of Nalanda due to the survival of Xuanzang's magnificent record. Also of importance to note was the fact that the Indian universities provide the first true example of residential universities (especially Nalanda)> However these ancient institutions would not qualify to be universities in the modern sense of the word simply because they did not conder 'degrees' a la European universities.
The Turko-Afghan invasions alongside other social and political factors swept away these institutions from the fabric of Indian society. Such instituitons survived only nominally in within the medieval royal palace but never grew to exist in the scale of Nalanda. Often these royal 'academies' collapsed where royal patronage ceased to exist. Elewhere 'university'-like institutions were maintained on a very local scale at regional mathas for Hindus. These were however more restricted in their aims as compared to the earlier universities.
Awarding academic titles was not a custom of educational institutions at the time but ancient institutions of higher learning also existed in China (Academies (Shuyuan)), Greece (the Academy), and Persia (Academy of Gundishapur)
The School, founded in 387 BC by the Greek philosopher Plato in the grove of Academos near Athens, taught its students philosophy, mathematics, and gymnastics, and is sometimes considered to resemble a university. Other Greek cities with notable educational institutions include Kos (the home of Hippocrates), which had a medical school, and Rhodes, which had philosophical schools. Another famous classical institution was the Museum and Library of Alexandria.

Raphael's School of Athens
Institutions bearing a resemblance to the modern university also existed in Persia and the Islamic world prior to Al-Azhar University, most notably the Academy of Gundishapur.
In the Carolingian period, Charlemagne created a type of academy, called the palace or court school (schola palatina), in Aachen, a city in present-day Germany. Another school, nowadays embodied by the Brexgata University Academy, was founded in the year 798 by Carolingian leaders. It was situated near Noyon, a city in present-day France. From a broader perspective it was the scholars, the aristocrats, the clergymen, and Charlemagne himself, who shared a vision of educating the population in general, and of training the children of aristocrats in how to manage their lands and protect their states against invasion or squandering. These initiatives were a foreshadowing of the rise, from the 11th century onward, of universities in Western Europe.
In Mali, West Africa, the celebrated Islamic University of Sankore (established 989 C.E.) had no central administration; rather, it was composed of several entirely independent schools or colleges, each run by a single master (scholar or professor). The courses took place in the open courtyards of mosque complexes or private residences. The primary subjects were the Qur’an, Islamic studies, law and literature. Other subjects included medicine and surgery, astronomy, mathematics, physics, chemistry, philosophy, language and linguistics, geography, history and art. The students also spent time in learning a trade and business code and ethics. The university trade shops offered classes in business, carpentry, farming, fishing, construction, shoe making, tailoring and navigation. It was claimed that the intellectual freedom enjoyed in Western Universities was inspired from universities like Sankore and Qurtuba (Muslim Spain) universities.
Memorizing the Qur’an and mastering Arabic language were compulsory to students. Arabic was a lingua franca of the university as well as the language of trade and commerce in Timbuktu. Except for a few manuscripts, which are in Songhay and other a’jami language, all the remaining 70,000 manuscripts are in Arabic. (Al-Furqan Heritage Foundation-London publishes a list of the manuscripts just in Ahmed Baba library in 5 volumes.)
Like all other Islamic universities, its students came from all over the world. Around the 12th century it had an attendance of 25,000 students, in a city of 100,000 people. The university was known for its high standards and admission requirements

[edit] Medieval European universities
The first European medieval university was the University of Magnaura in Constantinople (now Istanbul, Turkey), founded in 849 by the regent Bardas of emperor Michael III, followed by the University of Salerno (9th century), University of Bologna (1088) in Bologna, Italy, the University of Paris (c. 1100) in Paris, France, later associated with the Sorbonne, and the University of Oxford (11th century) in England. Many of the medieval universities in Western Europe were born under the aegis of the Roman Catholic Church, usually as cathedral schools or by papal bull as Studia Generali (NB: The development of cathedral schools into Universities actually appears to be quite rare, with the University of Paris being an exception - see Leff, Paris and Oxford Universities). In the early medieval period, most new universities were founded from pre-existing schools, usually when these schools were deemed to have become primarily sites of higher education. Many historians state that universities and cathedral schools were a continuation of the interest in learning promoted by monasteries.
In Europe, young men proceeded to university when they had completed their study of the trivium–the preparatory arts of grammar, rhetoric, and dialectic or logic–and the quadrivium: arithmetic, geometry, music, and astronomy. (See Degrees of the University of Oxford for the history of how the trivium and quadrivium developed in relation to degrees, especially in anglophone universities).

[edit] Emergence of modern universities
Main article: History of European research universities
The end of the medieval period marked the beginning of the transformation of universities that would eventually result in the modern research university. Many external influences, such as eras of humanism, Enlightenment, Reformation, and revolution, shaped research universities during their development, and the discovery of the New World in 1492 added human rights and international law to the university curriculum.
By the 18th century, universities published their own research journals, and by the 19th century, the German and the French university models had arisen. The German, or Humboldtian model, was conceived by Wilhelm von Humboldt and based on Friedrich Schleiermacher’s liberal ideas pertaining to the importance of freedom, seminars, and laboratories in universities. The French university model involved strict discipline and control over every aspect of the university.
Universities concentrated on science in the 19th and 20th centuries, and they started to become accessible to the masses after 1914. Until the 19th century, religion played a significant role in university curriculum; however, the role of religion in research universities decreased in the 19th century, and by the end of the 19th century, the German university model had spread around the world. The British also established universities worldwide, and higher education became available to the masses not only in Europe. In a general sense, the basic structure and aims of universities have remained constant over the years.

[edit] Organization

Brooks Hall, home of the Terry College of Business at the University of Georgia in Athens, Georgia
Although each institution is differently organized, nearly all universities have a board of trustees, a president, chancellor or rector, at least one vice president, vice-chancellor or vice-rector, and deans of various divisions. Universities are generally divided into a number of academic departments, schools or faculties. Public university systems are ruled over by government-run higher education boards. They review financial requests and budget proposals and then allocate funds for each university in the system. They also approve new programs of instruction and cancel or make changes in existing programs. In addition, they plan for the further coordinated growth and development of the various institutions of higher education in the state or country. However, many public universities in the world have a considerable degree of financial, research and pedagogical autonomy. Private universities are privately funded having generally a broader independence from state policies.
Despite the variable policies, or cultural and economic standards available in different geographical locations create a tremendous disparity between universities around the world and even inside a country, the universities are usually among the foremost research and advanced training providers in every society. Most universities not only offer courses in subjects ranging from the natural sciences, engineering, architecture or medicine, to sports administration, social sciences, law or humanities, they also offer many amenities to their student population including a variety of places to eat, banks, bookshops, print shops, job centres, and bars. In addition, most major universities have their own libraries, sports centers, restaurants, students' unions, botanical gardens, astronomical observatories, university hospitals and clinics, computer labs, research laboratories, business incubators and many other.

[edit] Universities around the world

Western Illinois University
The funding and organization of universities is very different in different countries around the world. In some countries universities are predominantly funded by the state, while in others funding may come from donors or from fees which students attending the university must pay. In some countries the vast majority of students attend university in their local town, while in other countries universities attract students from all over the world, and may provide university accommodation for their students.

[edit] Universities and student life in different countries
See also: List of colleges and universities by country.
Afghan universities
Albanian universities
Argentine universities
Australian universities
Bangladeshi universities
Belgian universities
Bosnian universities
Brazilian universities
British universities
Bulgarian universities
Cambodian universities
Cameroon universities
Canadian universities
Chilean Universities
Chinese universities
Colombian universities
Croatian universities
Danish universities
Dutch universities
Egyptian universities
French universities
German universities
Greek universities
Hong Kong universities
Hungarian universities
Indian universities
Iranian universities
Iraqi universities
Irish universities
Israeli universities
Italian universities
Japanese universities
Jordanian universities
Kenyan universities
South Korean universities
Macedonian universities
Malaysian universities
Mexican universities
Montenegrin universities
Moroccan universities
New Zealand universities
Nicaraguan universities
Nigerian universities
Norwegian universities
Pakistani universities
Palestinian universities
Philippine universities
Polish universities
Portuguese universities
Romanian universities
Russian universities
Serbian universities
Singaporean universities
Slovenian universities
South African universities
Spanish universities
Swiss universities
Syrian universities
Taiwanese universities
Thai universities
Uruguayan universities
Turkish universities
U.K. universities
U.S. universities
Zambian Universities

[edit] Selective admissions
Admission systems and university structures vary widely around the world (see college admissions). Differences are marked in countries where universities fulfill the role of community colleges in the United States and Europe.

[edit] Colloquial usage
Colloquially, the term university may be used to describe a phase in one's life: "when I was at university…" (in the United States and the Republic of Ireland, college is used instead: "when I was in college..."). See the college article for further discussion. In Australia, New Zealand and the German speaking countries "university" is often contracted to "uni", which has also recently become common among the young in the United Kingdom. In New Zealand and in South Africa it is sometimes called "varsity", which was also common usage in the UK in the 19th century.
The usual practice in the United States today is to call an institution made up of several schools and/or colleges and granting a range of post-graduate degrees a "university", while a smaller institution only granting bachelor's or associates degrees is called a "college". (See liberal arts colleges.) Nevertheless, a few of America's older universities, such as Boston College, Dartmouth College, and College of William and Mary, have retained the term "college" in their names for historical reasons, even though they offer a wide range of higher degrees. On the other hand, many smaller, principally undergraduate institutions call themselves "universities," primarily for marketing purposes to make them appear more prestigious. In the United States, the Carnegie classification system distinguishes among institutions on the basis of the prevalence of degrees they grant. The Carnegie classifications are: I (doctoral), IIA (masters), IIB (baccalaureate), III (2-year institutions with academic ranks), IV (2-year institutions without academic ranks). A "true" university is an institution with a I or IIA classification.

Moscow State University at Sparrow Hills is the largest educational building in the world.

[edit] Criticism
In his study of the American university since World War II, The Knowledge Factory, Stanley Aronowitz argues that the American university has been besieged by growing unemployment issues, the pressures of big business on the land grant university, as well as the political passivity and ivory tower naivete of American academics.
In a somewhat more theoretical vein, the late Bill Readings contends in his 1995 study The University in Ruins that the university around the world has been hopelessly commodified by globalization and the bureaucratic non-value of "excellence." His view is that the university will continue to linger on as an increasingly consumerist, ruined institution until or unless we are able to conceive of advanced education in transnational ways that can move beyond both the national subject and the corporate enterprise.
In his 2006 article "Why Intellectuals Still Support Socialism" Peter G. Klein wrote "Today, many professors at major research universities do little teaching. Their primary activity is research, though much of that is questionable as real scholarship." [1] (It should be noted that Klein's article, like Aronowitz' book, deals specifically with American universities.)

[edit] Under pressure
In some countries, in some political systems, universities are controlled by political and/or religious authorities, who forbid certain fields and/or impose certain other fields. Sometimes national or racial limitations exist - for students, staff, research.

[edit] Nazi universities
Books from university libraries, written by anti-Nazi or Jewish authors, were burned in places (eg. in Berlin) in 1933, the curricula were modified. Jewish professors and students were expelled according to the racial policy of Nazi Germany, see also the Law for the Restoration of the Professional Civil Service. Martin Heidegger became the rector of Freiburg University, where he delivered a number of Nazi speaches. On August 21, 1933 Heidegger established the Führer-principle at the university, later he was appointed Führer of Freiburg University. University of Poznań was closed by the Nazi Occupation in 1939. 1941-1944 a German university worked there. University of Strasbourg was transferred to Clermont-Ferrand and Reichsuniversität Straßburg existed 1941-1944.
Nazi universities ended in 1945.

[edit] Soviet universities
Soviet type universities existed in Soviet Union and in other countries of the Eastern Bloc. Medical, technical, economical, technological and artistical faculties were separated from universities (compare the List of institutions of higher learning in Russia). Soviet ideology was taught divided into three disciplines: Scientific Communism, Marxism-Leninism (mostly in form of Leninism) and Communist Political Economy) and was introduced as part of many courses, eg. teaching Karl Marx' or Vladimir Lenin's views on energy or history. Genetics was degradated to Lysenkoism. Communist parties controlled or influenced universities. Sciences were generally tolerated, but humanities curbed. In 1922, the Bolshevik government expelled some 160 prominent intellectuals. The leading university was the Moscow State University. After Iosif Stalin's death, universities in some Communist countries obtained more freedom. Patrice Lumumba Peoples' Friendship University provided higher education as well as a KGB training ground for young communists from developing countries. The system failed during the years 1989-1991. Universities in North Korea continue the tradition.

[edit] References
^ Hartmut Scharfe(2002). Education in Ancient India. Brill Academic Publishers. ISBN 90-04-12556-6.
Stanley Aronowitz, The Knowledge Factory. Boston: Beacon, 2000. ISBN needed
Clyde W. Barrow, Universities and the Capitalist State: Corporate Liberalism and the Reconstruction of American Higher Education, 1894-1928, University of Wisconsin Press 1990 ISBN needed
Sigmund Diamond, Compromised Campus: The Collaboration of Universities with the Intelligence Community, 1945-1955, Oxford University Press 1992 ISBN needed
Olaf Pedersen, The First Universities : Studium Generale and the Origins of University Education in Europe, Cambridge University Press, 1998 ISBN needed
Bill Readings, The University in Ruins. Harvard UP, 1995 ISBN needed
Thomas F. Richards, The Cold War Within American Higher Education: Rutgers University As a Case Study,Pentland Press 1998 ISBN needed
Walter Ruegg (ed), A History of the University in Europe, Cambridge University Press, Cambridge (3 vols) ISBN 0-521-36107-9 (vol 3 reviewed by Laurence Brockliss in the Times Literary Supplement, no 5332, 10 June 2005, pages 3-4)

[edit] See also
College applications
Corporate universities
Institutes of technology (and Polytechnics)
International university
List of academic disciplines
List of colleges and universities
List of oldest universities in continuous operation
Medieval universities, including list of
Muslim educational institutions
Private university
Public university
School and university in literature
Underground education in Poland during World War II
University of the Third Age
University ranking
Urban university
Vocational university
Wikiportal/University
Widening participation

[edit] Related terms
academia - academic rank - academy - admission - alumnus - aula - polytechnic - Brain farm - Bologna process - business schools - Grandes écoles - campus - college - college and university rankings - dean - degree - diploma - discipline - dissertation - faculty - fraternities and sororities - graduate student - graduation - Ivory Tower - lecturer - medieval university - medieval university (Asia) - mega university - perpetual student - professor - provost - rector - research - scholar - senioritis - student - tenure - Town and Gown - tuition - undergraduate - universal access - university administration